

Exploring Renewable Energy Opportunities on Land Holdings

Written by Victoria Adetimehin, Ifeoma Onyekwe, Esther Dele-Adeneye, King Dele-Adeneye, Jayden Onyiriuka

Introduction:

As climate concerns grow in the US, renewable energy opportunities surface in different types of land in the US. Among these are agricultural, industrial, residential, and municipal lands offering unique settings for renewable energy projects. An example of this is windmills on the edge of agricultural lands and also rooftop solar panels in housing suburbs on residential land. Industrial zones also contain plenty of flat roofs perfect for photovoltaics. Municipal land offers renewable bioenergy from landfill waste. As climate issues grow more urgent, using different types of land—like farms, factories, neighborhoods, and city property—for the right kind of renewable energy can help the U.S. build a cleaner, more sustainable future.

Solar Energy:

Solar power is one of the most widely adaptable renewable energy sources, suitable for agricultural, industrial, residential, and municipal lands. On farms, solar panels can be installed over crop fields in a method called agrivoltaics, which allows both food and energy production. Industrial areas often use the flat roofs of warehouses and factories for large-scale photovoltaic (PV) arrays. Residential homes commonly adopt rooftop solar panels to reduce electricity bills and reliance on the grid. Municipal governments install solar on public buildings, parking lots, and even closed landfills to generate clean energy for schools and other facilities.

Wind Energy:

Wind power is most effective in open, rural, or elevated areas where wind speeds are consistent. Agricultural land, especially in the Midwest and Great Plains, often hosts large wind turbines that generate power while still allowing farming activity below. While less common in residential or industrial zones due to space and noise limitations, some industrial parks in windy regions do install turbines. Municipalities may use wind at wastewater plants or on publicly owned land outside city centers, especially where space allows and wind conditions are favorable.

Biomass Energy:

Biomass and biogas harness energy from organic waste materials such as crop residues, manure, food waste, and landfill gas. On agricultural land, anaerobic digesters convert livestock manure into methane for heat or electricity. In industrial settings, food processing plants and paper mills use byproducts like wood chips or food scraps for energy. Residential biomass use is usually limited to wood or pellet stoves for heating. Municipal landfills and wastewater treatment plants often capture methane emissions and use them to power turbines or fuel cells, reducing greenhouse gas emissions while producing energy.

Geothermal Energy:

Geothermal systems use the earth's natural heat for power generation or heating and cooling. While deep geothermal power plants are rare and geographically limited in the U.S., ground-source heat pumps are widely used across land types. Farms and rural homes use geothermal systems to regulate building temperatures efficiently. Industrial buildings benefit from geothermal HVAC systems to cut heating and cooling costs. In residential areas, geothermal heat pumps offer an eco-friendly alternative to traditional systems. Municipalities may use geothermal for district heating in schools or recreation centers, reducing long-term energy expenses.

Land Suitability Factors & Benefits for Landowners

-Land Suitability Factors

The success of renewable energy projects largely depends on the suitability of the land. Ideal locations offer consistent natural resources, such as strong sunlight for solar panels or steady wind for turbines. Additionally, proper zoning laws and minimal land restrictions are crucial, as they determine whether renewable infrastructure can legally and efficiently be built. Without these factors, even the most advanced technology may underperform or face legal challenges.

-Benefits for Landowners

Renewable energy projects can offer significant advantages for landowners. Leasing land to energy companies provides a steady source of income with little effort, especially in rural areas. Beyond financial gain, landowners contribute to environmental sustainability by supporting clean energy development. This involvement can also enhance their public image, positioning them as forward-thinking and eco-conscious members of the community.

Real world problems

Solar Energy

1. Apple's Solar Farms – North Carolina, USA

What they did: Apple built solar farms on over 400 acres of land near its data centers.

Why it matters: It shows how tech companies can use unused or rural land to fully power massive data centers with clean energy.

Source: Apple Environment Reports

2. NREL's Solar-Ag Project – Colorado, USA

What they did: The National Renewable Energy Laboratory (NREL) studies how solar panels and crops can coexist ("agrivoltaics").

Why it matters: Demonstrates dual land use—generating energy and farming on the same land.

Source: NREL Agrivoltaics Research

Wind Energy

3. Alta Wind Energy Center – California, USA

What they did: The largest wind farm in the U.S., built on land leased from multiple owners.
Why it matters: Landowners receive regular lease payments; shows how large-scale wind projects can benefit private landowners.

Source: Terra-Gen Power

4. Iowa Family Farms Leasing to Wind Companies

What they did: Many family farms in Iowa lease land to wind developers like MidAmerican Energy.

Why it matters: Farmers earn up to \$10,000/year per turbine without giving up much usable land.

Source: U.S. Department of Energy – Wind Energy Benefits

Biomass

5. Green Energy Farmers – United Kingdom

What they did: UK farms grow energy crops like miscanthus and willow to be used in biomass boilers.

Why it matters: Shows how marginal farmland can be repurposed for renewable biomass fuel.

Source: Biomass Energy Centre UK

6. Double A Dairy Biogas – Idaho, USA

What they did: A dairy farm uses cow manure to produce biogas, powering farm operations and selling excess power.

Why it matters: Combines waste management with energy production, reducing methane emissions.

Source: EPA AgSTAR Program

Geothermal

7. The Geysers Geothermal Complex – California, USA

What they did: The world's largest geothermal plant, built on leased public and private land.

Why it matters: Showcases long-term land use for geothermal without visual intrusion.

Source: Calpine Corporation

8. Organic Valley – Wisconsin, USA

What they did: Organic Valley, a farmer co-op, uses shallow geothermal heating systems in its headquarters and some farms.

Why it matters: A real-world use of geothermal in a colder climate, improving energy efficiency.

Source: Organic Valley Sustainability Reports

Roadmap to implementation

To successfully harness renewable energy on your land holdings, start by conducting a thorough land assessment, evaluating factors like sunlight exposure for solar panels, wind patterns for turbines, and soil conditions for potential geothermal systems. Next, review zoning laws, environmental regulations, and utility interconnection requirements to ensure legal compliance. Engage a certified renewable energy consultant or engineer to perform feasibility studies and design a system tailored to your land's unique characteristics. Secure financing or incentives available through federal, state, or local programs to offset upfront costs. Once

permits are obtained, select reputable contractors to install the energy systems, ensuring adherence to safety and quality standards. Finally, establish a maintenance and monitoring plan to optimize performance and maximize the return on your renewable energy investment.

Conclusion

Exploring Renewable Energy Opportunities on Land Holdings

As climate concerns grow, different land types—agricultural, industrial, residential, and municipal—offer valuable opportunities for renewable energy. Farms can host wind turbines and agrivoltaics, residential areas use rooftop solar, industrial zones install solar on flat roofs, and municipalities convert landfill waste into energy.

Types of Renewable Energy

- Solar: Versatile across all land types—used on farms, rooftops, public buildings, and landfills.
- Wind: Most effective in rural, open areas; common on farmland and some municipal or industrial sites.
- Biomass: Converts organic waste into energy; used on farms, in food and paper industries, and at landfills.
- Geothermal: Ground-source systems provide heating and cooling for homes, farms, factories, and public buildings.

Land Suitability and Benefits

- Success depends on natural resources, zoning laws, and minimal restrictions.
- Landowners benefit through steady income, environmental impact, and improved public image.

Real-World Examples

- Apple's solar farms in North Carolina; NREL's agrivoltaics in Colorado.
- Alta Wind Center in California; Iowa farms leasing to wind developers.
- UK farms growing biomass crops; Idaho dairy producing biogas.
- The Geysers geothermal plant in California; Organic Valley's geothermal systems in Wisconsin.

Implementation Roadmap

Assess land conditions, review zoning laws, and consult experts. Secure financing, obtain permits, hire experienced contractors, and establish a maintenance plan to ensure long-term success.