

Team Estate: Sofia Socorro, Valeria Socorro, Oreofeoluwatomi Shodipo, Fikayo Shodipo, Dunmola Akande, and Janelle Y.

The Role of Technology and AI in Modern Land Investment

Introduction

Aerial farmland view. Land investment in the United States is rapidly evolving under the influence of digital technologies and artificial intelligence (AI). Today, even traditionally low-tech sectors like farmland are harnessing AI to analyze vast datasets. For example, AI “is on its way to helping humans efficiently sort through farmland data to answer complex questions, such as how much a field is worth” (Walter). Industry analysts note that “AI has enormous potential to reshape real estate, with near and long-term impacts ranging from... new markets and asset types to innovations in investment and revenue models” (JLL). AI developments demonstrate a new path to land investment, but also introduces new challenges around data access, privacy, and equity. This paper examines the role of technology and AI in the U.S. land investment, arguing that while advanced tools are transforming valuation, mapping, and transactions, realizing their full benefits will require attention to data quality and inclusive access.

Background

Existing research on land investment intersects with proptech trends, geospatial analytics, and agricultural innovation. From a land-administration perspective, scholars emphasize that many systems still rely on manual records and that AI’s “full potential...has not yet been fully realised” across tenure, valuation, and development functionsminerva-access.unimelb.edu.au. In practice, the broad proptech movement – from online listings to algorithmic analytics – has laid a foundation for AI’s entry into real estate. For example, practitioners observe that geographic information systems (GIS) are now aggregating land use, ownership, and soil data into unified digital maps, making property analysis more powerfulrliland.com. Drones equipped with LiDAR sensors are creating high-resolution 3D terrain models, vastly improving survey accuracy over large parcelsrliland.com.

AI and predictive analytics are key trends in land valuation. Industry sources note that AI tools can “unify...disparate data sources by analyzing past sales records, land use records, and current market conditions,” even using algorithms to “predict the future value of a property”rliland.com. In agriculture, precision farming technologies – such as satellite remote sensing, IoT soil sensors, and machine learning crop models – are widely cited, as are blockchain-enabled traceability tools for supply chains and land datafarmonaut.com. In the U.S. specifically, companies have developed specialized platforms: for instance, AcreTrader’s Acres platform and FBN’s AcreVision consolidate hundreds of millions of parcel records and imagery

for valuation (discussed below). Collectively, the literature and industry reports highlight a major trend: the commoditization of land data and analytics through digital platforms.

Research Approach

To investigate technology's role in U.S. land investment, this review adopted a qualitative survey of recent sources. We examined industry white papers, news releases, and academic articles from 2020–2025 focusing on AI, geospatial tools, and real estate tech in the U.S. context. Key sources included property-technology research (e.g., JLL and PwC reports), trade publications (e.g., *Successful Farming*, Realtors® Land Institute blog), company news (AcreTrader, Regrid), and academic journals (Land Use Policy). Each source was evaluated for relevance to land asset management or transaction processes. The analysis synthesized insights from these diverse materials to identify current practices (e.g., AI valuation, mapping) and to assess implications. Whenever possible, we prioritized U.S.-based examples and data.

Results

AI-Driven Valuation Tools: Modern land investors usage of AI has significantly increased, to value and target properties. For example, digital farmland platforms are making information more transparent and accessible for newbie investors. *Successful Farming* reports that AI can efficiently analyze farmland sales to estimate land worth and even identify likely buyers from past transaction (Walter). AcreTrader's Acres platform, for instance, provides AI-assisted land analysis (sales comps, soil and crop history, satellite imagery, etc.) across 150 million U.S.

Conclusion and Implications

This paper finds that U.S. land investment is undergoing a technological transformation. AI-driven analytics, GIS and drone mapping, and digital transaction platforms are increasingly linked in how land is valued, marketed, and traded. These innovations promise to make land markets more efficient and transparent – automating valuations, illuminating property data, and securing titles in ways unimaginable a decade ago liland.com/jll.com. At the same time, fully realizing AI's benefits will require overcoming obstacles of data availability, bias, and equitable access. As one land-use policy review notes, the “full potential of AI across the entire landscape of land administration has not yet been fully realised” minerva-access.unimelb.edu.au. To address this, investors and developers should combine AI tools with expert oversight, and regulators should ensure compliance with privacy and fairness.

References

AcreTrader, Inc. (2022, October 5). AcreTrader launches Acres, a geospatial analytics platform providing comprehensive insights on land value [Press release]. Retrieved from <https://acretrader.com/newsroom/acretrader-launches-acres-geospatial-analytics-platform-providing-comprehensive-insights-land-value>

Agriculture.com. (2023, November 27). AI brings transparency to farmland values. Successful Farming. Retrieved from <https://www.agriculture.com/ai-brings-transparency-to-farmland-values-8403821>

Hosseini, H., Atazadeh, B., & Rajabifard, A. (2025). Towards intelligent land administration systems: Research challenges, applications and prospects in AI-driven approaches. *Land Use Policy*, 157, 107652. <https://doi.org/10.1016/j.landusepol.2025.107652>

JLL. (2023). Artificial intelligence: Real estate revolution or evolution? JLL Research. Retrieved from <https://www.jll.com/en-us/insights/artificial-intelligence-and-its-implications-for-real-estate>

Kat Szymanski (REALTORS® Land Institute). (2025, June 12). How technology is transforming land real estate. Retrieved from <https://www.rliland.com/Voices/The-Voices-of-Land-blog/ArticleID/411/How-Technology-Is-Transforming-Land-Real-Estate>

Regrid. (2021, September 29). Regrid launches nationwide land parcel data + matched building footprints [Press release]. Retrieved from <https://regrid.com/blog/regrid-launches-nationwide-parcel-data-matched-building-footprints>

AlphaGeo. (n.d.). AlphaGeo: AI-powered predictive analytics for resilient investing. Retrieved from <https://alphageo.ai/>

North Penn Now. (2025, April 8). Ethical and regulatory challenges of AI in real estate. Retrieved from <https://northpennnow.com/news/2025/apr/08/ethical-and-regulatory-challenges-of-ai-in-real-estate/>